Quantum Programming Examples
Examples of quantum programming in JOEL using qubit-level operations.
Bell State
Create an entangled Bell state:
[Compiled]
quantum_circuit bell_state() -> qubit[2] {
qubit[2] q = [|0⟩, |0⟩]
# Apply Hadamard to first qubit
q[0] = H(q[0])
# Apply CNOT to create entanglement
q[1] = CNOT(q[0], q[1])
return q
}
fn main() {
let bell = bell_state()
let result = measure_all(bell)
print("Bell state measurement:", result)
}Quantum Teleportation
Implement quantum teleportation protocol:
[Compiled]
quantum_circuit teleport(qubit message) -> qubit {
# Create Bell pair
qubit[2] bell = bell_state()
# Alice's operations
qubit alice_qubit = bell[0]
qubit bob_qubit = bell[1]
# Entangle message with Alice's qubit
alice_qubit = CNOT(message, alice_qubit)
message = H(message)
# Measure Alice's qubits
let m1 = measure(message)
let m2 = measure(alice_qubit)
# Bob's corrections
if m2 {
bob_qubit = X(bob_qubit)
}
if m1 {
bob_qubit = Z(bob_qubit)
}
return bob_qubit
}Grover’s Search Algorithm
Search for a marked item in an unsorted database:
[Compiled]
quantum_circuit grover_search(
qubit[n] database,
fn oracle: qubit[n] -> qubit[n]
) -> qubit[n] {
# Initialize superposition
for i in 0..n {
database[i] = H(database[i])
}
# Grover iterations
let iterations = floor(π/4 * sqrt(2^n))
for _ in 0..iterations {
database = oracle(database)
database = grover_diffuser(database)
}
return database
}
# Oracle function (marks the solution)
fn mark_solution(qubit[n] q) -> qubit[n] {
# Flip the phase of the target state
# Implementation depends on the problem
return q
}Quantum Fourier Transform
Implement QFT for quantum phase estimation:
[Compiled]
quantum_circuit qft(qubit[n] q) -> qubit[n] {
for i in 0..n {
q[i] = H(q[i])
for j in (i+1)..n {
let phase = 2 * π / (2^(j - i + 1))
q[j] = controlled_phase(phase, q[i], q[j])
}
}
return reverse(q)
}Variational Quantum Eigensolver
Find ground state energy using VQE:
[Compiled]
fn variational_quantum_eigensolver(
hamiltonian: matrix,
ansatz: quantum_circuit
) -> f64 {
let optimizer = Adam(learning_rate: 0.01)
let params = initialize_parameters()
for iteration in 0..100 {
# Prepare quantum state
qubit[n] q = ansatz(params)
# Measure expectation value
let energy: f64 = expectation(hamiltonian, q)
# Update parameters classically
let gradient = calculate_gradient(energy, params)
params = optimizer.update(params, gradient)
print("Iteration", iteration, "Energy:", energy)
}
return energy
}Quantum Error Correction
Implement three-qubit bit-flip code:
[Compiled]
# Encoding
quantum_circuit encode_bit_flip(qubit logical) -> qubit[3] {
qubit[3] physical = [|0⟩, |0⟩, |0⟩]
physical[0] = logical
physical[1] = CNOT(logical, physical[1])
physical[2] = CNOT(logical, physical[2])
return physical
}
# Error correction
quantum_circuit correct_bit_flip(qubit[3] encoded) -> qubit[3] {
# Measure stabilizers
let syndrome1 = measure(CNOT(encoded[0], encoded[1]))
let syndrome2 = measure(CNOT(encoded[0], encoded[2]))
# Apply correction based on syndrome
if syndrome1 && !syndrome2 {
encoded[1] = X(encoded[1]) # Flip second qubit
} else if !syndrome1 && syndrome2 {
encoded[2] = X(encoded[2]) # Flip third qubit
} else if syndrome1 && syndrome2 {
encoded[0] = X(encoded[0]) # Flip first qubit
}
return encoded
}Quantum Hardware Execution
Execute on real quantum hardware:
[Compiled]
fn run_on_hardware() {
# Connect to IBM Quantum
quantum_backend ibm = connect("ibm_quantum", api_key: "...")
# Prepare circuit
qubit[5] q = prepare_circuit()
# Execute with multiple shots
let result = execute(q, ibm, shots: 1024)
# Analyze results
for (state, count) in result.counts() {
print("State:", state, "Count:", count)
}
}